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Hydrodynamic field around a Brownian particle
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We use molecular dynamics simulations of a solid Brownian particle in an explicit solvent to analyze the
velocity field generated by a stochastic motion of a particle. The simulation data demonstrate that the amplitude
of the velocity field around a Brownian particle decays much faster than the velocity field around a particle
moving with a constant velocity. However, the time-integrated response of the velocity field around a Brown-
ian particle has exactly the same distance dependence as the velocity field around a particle moving with a
constant velocity. This finding elucidates the validity of an assumption used in theoretical descriptions of
Brownian particles dynamics in confined geometries and in colloids; namely, that viscous drag forces can be
computed as if the particles move with constant velocities.
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A spherical particle moving with a constant velocity in a
stationary fluid generates a long-range velocity field V(r)
that decays as the inverse of the distance from the sphere
center, V(r)~1/r [1]. This long-range velocity field modi-
fies the drag force on the particle in narrow channels due to
boundary conditions imposed by the walls [2]. The same
velocity field leads to long-range hydrodynamic interactions
in colloids [3]. In a standard and accepted approach to the
problem of diffusing Brownian particles in confined geom-
etries or in suspensions, the forces acting on particles are
calculated as if particles’ velocities are constant [2]. This
treatment yields results that are in excellent agreement with
experimental data [4].

The problem of the velocity field around Brownian par-
ticles is also relevant to a recent hypothesis that unusually
high enhancements of thermal conductivity observed in fluid
suspensions of nanosized particles (nanofluids) are due to
hydrodynamic effects of the Brownian motion of nanopar-
ticles [5-7]. The argument here is that, due to long-range
velocity fields, the large volumes of fluid are dragged by
nanoparticles and carry a substantial amount of heat.

It is, however, puzzling how a Brownian particle that rap-
idly changes the direction of its motion is capable of gener-
ating a long-range velocity field quantitatively the same as
that present around a particle moving with a constant veloc-
ity. In particular, during a short relaxation time, characteristic
of the Brownian motion, a hydrodynamic signal propagates
only over a distance comparable with the particle size, which
does not appear sufficient to establish a velocity field with a
substantial range.

Related conceptual difficulty was recognized in the con-
text of the calculation of diffusivity of Brownian particles
[8]. In this case the Stokes-Einstein formalism assumes that a
drag coefficient is computed as if the particle velocity is a
constant. This assumption allows us to write down a Lange-
vin dynamics equation of motion:
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d
md—1;=—67TnRv+F(t), (1)

describing the motion of a particle with radius R and mass m
that is moving in a fluid of viscosity 7 under the influence of
the viscous drag force and a stochastic force, F(z). The drag
force —6mmRv is only a function of an instantaneous velocity
and does not depend on the particle motion history. Despite
these simplifications, this approach captures essential fea-
tures of the Brownian motion and leads to the quantitatively
correct Stokes-Einstein formula for particle diffusivity, D
=kgT/67mR. In fact, it was rigorously demonstrated that
while the exact treatment of the particle motion requires in-
corporation of the memory effects in the Langevin equation,
the diffusion constant is only dependent on the time-
integrated viscous drag coefficient, which is exactly the same
as the viscous drag coefficient for a stationary motion [8].

In our work, rather than focusing on the particle motion,
we will analyze the velocity field around a Brownian par-
ticle. First, we present an estimate of the range of the hydro-
dynamic field around a Brownian particle. An analysis of Eq.
(1) leads to a characteristic Brownian relaxation time,

Tp=m/6T YR, (2)

over which the particle moves in a deterministic manner.
During this time a hydrodynamic signal propagating by a
viscous shear travels by a distance, \:

V2R
A== 22, (3)
3 Pr

where v=7/py is the kinematic viscosity, and pp and pj are
densities of the particle and the fluid, respectively. Also, in
the derivation of Eq. (3) we used m=4mppR*/3. For particles
with density matching the density of the fluid, N is about half
of the particle radius, and even for dense solid particles \ is
of the order of the particle diameter. This estimate shows that
the range of the velocity field associated with the dominant
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frequency component of the Brownian motion is of the order
of a particle size, which is indeed much shorter than a very
long-range field around a particle moving with a constant
velocity.

To elucidate the apparent contradiction between the esti-
mate presented above and well-known long-range effects af-
fecting the Brownian motion we performed equilibrium mo-
lecular dynamics simulations of a single nanoparticle
embedded in a simple molecular fluid. The interactions be-
tween fluid atoms are described by the standard 6-—12
Lennard-Jones (LJ) potential, with a cutoff distance R,
=24 where o is the unit of length. The selected cutoff
distance corresponds to the minimum of the LJ potential.
Consequently, all fluid interatomic interactions are purely re-
pulsive. The solid particle is formed by carving out a sphere
out of a fcc lattice of atoms. These atoms, in addition to the
repulsive LJ interaction, are connected with the nearest
neighbors by attractive springs (FENE potential [9]). The
selected number of atoms in a particle is 296, leading to a
radius, R=~4o0. To mimic solid particles, the masses of atoms
forming nanoparticles are 3 times larger than the mass of the
fluid atom, resulting in a particle density about 4.5 times
larger than the fluid density. The particle is dissolved in
50 000 and 90 000 fluid atoms at a reduced fluid density of
0.81. The corresponding cubic simulation box sizes are about
40 and 480, respectively, i.e., 10 and 12 times the particle
radius. The molecular dynamics (MD) simulations are per-
formed at constant volume and temperature, 7=1.0g/kg,
where & is the LJ energy unit. A MD time step of
0.0057y,p( Ty p=\e/ma?) and the velocity-Verlet integration
algorithm are used in all simulations [10]. Each simulation
run consists of 200 000 MD step equilibration and 1 000 000
MD step data production.

During the simulation we collect the x, y, and z compo-
nents of the particle velocity, as well as the velocities of
concentric fluid shells of thickness 1o. From such obtained
data we calculate the nanoparticle velocity autocorrelation
function, (Vyp()Vyp(0)), where the triangular brackets de-
note the time average. To quantify the relationship between
the nanoparticle motion and the velocity field around the
particle we monitor the cross velocity correlation functions
between the nanoparticle and concentric fluid shells,
(V5 Vyp(0)), where r indicates the distance of the shell
from the particle center, with r=1.1 R corresponding to the
1o thick fluid layer adjacent to the particle.

In Fig. 1 we show the particle velocity autocorrelation
function (VAF), of the nanoparticle for the two system sizes
studied. The nanoparticle VAF value at t=0 corresponds to
the square of the average thermal velocity, while the inverse
of the VAF rate of decay corresponds to the Brownian relax-
ation time, 7. The 7 obtained from the exponential fit to the
VAF for 50 000 and 90 000 atom structures equal to 7.37,p
and 9.97,,, respectively, indicating that the particle in the
larger simulation box is more mobile. Accordingly, the dif-
fusion constants obtained from the integral of the VAF for
the 50000 and 90 000 atom structures are 5.9 and 7.2
X 107302/ 7y, respectively, and show a significant size ef-
fect associated with the long-range nature of hydrodynamic
forces.
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FIG. 1. The solid black line is the velocity autocorrelation func-
tion (VAF) of the particle in the 50 000 fluid atom structure, while
the dotted black line shows VAF for the particle in the 90 000 fluid
atom structure. The other data show cross correlations between the
velocity of the particle in the 50 000 fluid atom structure and ve-
locities of concentric fluid shells of thickness 10, located at various
distances from the particle center (distance 1.1 R corresponds to the
fluid layer immediately adjacent to the particle surface).

In Fig. 1 we also show particle-fluid cross velocity corre-
lations. These correlations show that the instantaneous veloc-
ity field around a Brownian particle is very different from the
one around a particle exhibiting a constant velocity motion.
The fluid layer immediately adjacent to the particle is
strongly correlated with the particle motion. This is charac-
teristic of the nonslip boundary condition. However, with
increasing distance from the fluid, the response is delayed. In
fact, at distances larger than about 2 R, the peak response
time is proportional to 7> (see Fig. 2), consistent with the
diffusive viscous shear signal propagation in the Newtonian
fluid flow [1].

The magnitude of the peak response of the velocity cor-
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FIG. 2. A time corresponding to the peak position of the fluid-
particle cross-correlation functions from Fig. 1 as a function of the
distance from the particle center (in units of particle radius) on a
log-log plot. The solid line indicates a slope of 2.
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FIG. 3. Squares: Time integrals of the fluid-particle cross-
correlation functions normalized by the time integral of the particle
VAF as a function of the distance from the particle center for 50 000
and 90 000 fluid atom structures. Circles: Velocity of the fluid shells
normalized by the particle velocity in the constant velocity
simulation.

relation function decays rapidly with increasing distance
from the nanoparticle. For the shell located at ¥=2.6 R from
the center of the particle, the peak value of the velocity field
correlated with the particle motion retains only 5% of the
(Vyp(0)Vyp(0)) value. Furthermore (V28 R(£)Vyp(0)) is very
smooth and does not reflect the sharp time decay of the nano-
particle VAF. This demonstrates that as the distance from the
nanoparticle increases, the surrounding fluid responds only
to the “average” motion of the particle, and not to the instan-
taneous velocity.

While the peak value of the correlated velocity field de-
cays rapidly with the distance from the particle, the time-
integrated correlations are much more persistent as demon-
strated in Fig. 3 by the integral of the (V. (1)Vyp(0))
normalized by [{Vnp(£)Vyp(0)) plotted as a function of r.
This is a result of the increasing width of the peak that to a
large extent compensates for the decreasing peak value.

To provide a reference for the spatial range of the time-
integrated correlations we simulated a Brownian particle
subjected to a constant force of 5e/c acting along the x
direction. To conserve momentum (as is the case for our
Brownian particle simulations), an equal and opposite force
was applied uniformly to the fluid. This external force leads
to particle drift with an average velocity comparable with the
r.m.s. of the thermal velocity.
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Quite remarkably, as demonstrated in Fig. 3, we find that

J (VO V yp(0))dt

,
shell

(Brownian) = (stationary),

NP

f (Vap()Vyp(0))dt
4)

i.e., that the integrated particle-fluid velocity correlations
normalized by the integrated particle VAF for a particle ex-
hibiting Brownian motion are quantitatively the same as the
shell velocities normalized by the particle velocity for a par-
ticle exhibiting a stationary motion. Our empirical observa-
tion given by Eq. (4), demonstrates that, in practice, the ve-
locity field around a Brownian particle can be treated as if
the particle moves with a constant velocity.

From the steady velocity simulations we extracted viscous
drag coefficients [see Eq. (1)] 6r7R=181 and 156+e’*m/a”,
for 50 000 and 90 000 atom structures, respectively, again
showing large size effects. In fact, due to periodic boundary
conditions applied in our simulations, our steady velocity
simulations are equivalent to the problem of a fluid flow past
a periodic cubic array of spheres separated by a distance
equal to the simulation box size. The analytical solution of
this problem predicts about 5% relative difference between
the viscous drag coefficients exhibited by spheres in the large
and small simulation cells, respectively [11]. The actual
simulations results show significantly larger 15% relative
difference. This discrepancy between the theoretical predic-
tion and simulations results might be associated with the fact
that the nonslip boundary condition at the particle-fluid in-
terface is not rigorously satisfied. In fact, a close examination
of the velocity profiles for larger and smaller simulation cells
indicates a larger velocity slip at the fluid-particle interface
for the larger system (Fig. 3).

The values of the drag coefficient calculated from the
steady velocity simulations allow us to calculate the particle
diffusivity from the Stokes-Einstein formula yielding D of
5.5%X 1073 and 6.4 X 107362/ 7,,;, for 50 000 and 90 000 atom
structures, respectively. These values are about 10% lower
than those obtained from the VAF integrals. This 10% differ-
ence is perhaps also related to the partial velocity slip at the
fluid-particle interface discussed above (see Fig. 3).

In summary, our analysis of the correlations between a
Brownian particle motion and the velocity field in the sur-
rounding fluid demonstrated that the time-integrated re-
sponse of the fluid has spatial characteristics which are ex-
actly the same as those of a fluid around a particle exhibiting
a stationary motion. This result relates to the problem of the
diffusion coefficient of a Brownian particle that also charac-
terizes a time-integrated motion and is correctly evaluated
with a viscous drag coefficient calculated as if the particle
velocity is a constant. Our results demonstrate an origin of
the validity of an assumption used in theoretical descriptions
of diffusive particles in confined geometries and in colloids,
namely that the viscous drag force can be computed as if the
particles were moving with constant velocities. It would be
highly desirable to have a theoretical justification of Eq. (4),
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which at this point is just an empirical observation from our
molecular simulation study.
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